Two-dimensional symbiotic solitons and vortices in binary condensates with attractive cross-species interaction

نویسندگان

  • Xuekai Ma
  • Rodislav Driben
  • Boris A. Malomed
  • Torsten Meier
  • Stefan Schumacher
چکیده

We consider a two-dimensional (2D) two-component spinor system with cubic attraction between the components and intra-species self-repulsion, which may be realized in atomic Bose-Einstein condensates, as well as in a quasi-equilibrium condensate of microcavity polaritons. Including a 2D spatially periodic potential, which is necessary for the stabilization of the system against the critical collapse, we use detailed numerical calculations and an analytical variational approximation (VA) to predict the existence and stability of several types of 2D symbiotic solitons in the spinor system. Stability ranges are found for symmetric and asymmetric symbiotic fundamental solitons and vortices, including hidden-vorticity (HV) modes, with opposite vorticities in the two components. The VA produces exceptionally accurate predictions for the fundamental solitons and vortices. The fundamental solitons, both symmetric and asymmetric ones, are completely stable, in either case when they exist as gap solitons or regular ones. The symmetric and asymmetric vortices are stable if the inter-component attraction is stronger than the intra-species repulsion, while the HV modes have their stability region in the opposite case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbiotic gap and semigap solitons in Bose-Einstein condensates

Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of interspecies repulsion, while the intraspecies interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers o...

متن کامل

Vortices in attractive Bose-Einstein condensates in two dimensions.

The form and stability of quantum vortices in Bose-Einstein condensates with attractive atomic interactions is elucidated. They appear as ring bright solitons, and are a generalization of the Townes soliton to nonzero winding number m. An infinite sequence of radially excited stationary states appear for each value of m, which are characterized by concentric matter-wave rings separated by nodes...

متن کامل

Bright vortex solitons in Bose Condensates

We suggest the possibility of observing and studying bright vortex solitons in attractive Bose-Einstein condensates in three dimensions with a radial trap. Such systems lie on the verge of critical stability and we discuss the conditions of their stability. We study the interaction between two such solitons. Unlike the text-book solitons in one dimension, the interaction between two radially tr...

متن کامل

Bright matter wave solitons in Bose–Einstein condensates

We review recent experimental and theoretical work on the creation of bright matter wave solitons in Bose–Einstein condensates. In two recent experiments, solitons are formed from Bose–Einstein condensates of 7Li by utilizing a Feshbach resonance to switch from repulsive to attractive interactions. The solitons are made to propagate in a one-dimensional potential formed by a focused laser beam....

متن کامل

Positive- and negative-mass solitons in Bose-Einstein condensates with optical lattices

We study the dynamics of solitons in Bose–Einstein condensates (BECs) loaded into an optical lattice (OL), which is combined with an external parabolic potential. Chiefly, the one-dimensional (1D) case is considered. First, we demonstrate analytically that, in the case of the repulsive BEC, where the soliton is of the gap type, its effective mass is negative. In accordance with this, we demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016